Estimating common trends in multivariate time series using dynamic factor analysis

نویسندگان

  • A. F. Zuur
  • R. J. Fryer
  • R. Dekker
  • J. J. Beukema
چکیده

This paper discusses dynamic factor analysis, a technique for estimating common trends in multivariate time series. Unlike more common time series techniques such as spectral analysis and ARIMA models, dynamic factor analysis can analyse short, non-stationary time series containing missing values. Typically, the parameters in dynamic factor analysis are estimated by direct optimisation, which means that only small data sets can be analysed if computing time is not to become prohibitively long and the chances of obtaining sub-optimal estimates are to be avoided. This paper shows how the parameters of dynamic factor analysis can be estimated using the EM algorithm, allowing larger data sets to be analysed. The technique is illustrated on a marine environmental data set.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysis of landings and environmental variables time series from the Caspian Sea

In the present study, the time series encompassing the years 1950-2011 of commercial landings from the Caspian Sea were analyzed using min/max autocorrelation factor analysis (MAFA) and dynamic factor analysis (DFA). These aim was to identify trends and explore the relationships between the response variables (annual landings of 10 species/groups such as kilkas, kutum, common carp, pike perch, ...

متن کامل

Evaluation of Univariate, Multivariate and Combined Time Series Model to Prediction and Estimation the Mean Annual Sediment (Case Study: Sistan River)

Erosion, sediment transport and sediment estimate phenomenon with their damage in rivers is a one of the most importance point in river engineering. Correctly modeling and prediction of this parameter with involving the river flow discharge can be most useful in life of hydraulic structures and drainage networks. In fact, using the multivariate models and involving the effective other parameter...

متن کامل

Dynamic Factor GARCH Multivariate Volatility Forecast for a Large Number of Series

We propose a new method for multivariate forecasting which combines the Generalized Dynamic Factor Model (GDFM) and the multivariate Generalized Autoregressive Conditionally Heteroskedastic (GARCH) model. We assume that the dynamic common factors are conditionally heteroskedastic. The GDFM, applied to a large number of series, captures the multivariate information and disentangles the common an...

متن کامل

A dynamic factor model for economic time series

A dynamic factor model is introduced which may be viewed as an alternative to vector autoregressions in the treatment of cointegration. An obvious way of introducing dynamics in the standard factor analysis is to allow a realization of the common factors at a specific time interval to work its way through to the observed variables in several time periods. A problem arises however, when represen...

متن کامل

Common trends in northeast Atlantic squid time series

In this paper, dynamic factor analysis is used to estimate common trends in time series of squid catch per unit effort in Scottish (UK) waters. Results indicated that time series of most months were related to sea surface temperature measured at Millport (UK) and a few series were related to the NAO index. The DFA methodology identified three common trends in the squid time series not revealed ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003